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Quantum computing is an emerging technology that is expected to achieve an exponential im-
provement in computing power. Its theoretical basis and application scenarios have been extensively
studied and explored in recent years. In this work, we propose efficient quantum algorithms suitable
for computing-power scheduling problems in the cloud rendering domain, which can be regarded
mathematically as a generalized form of the typical NP-complete problem – multi-way number par-
titioning problem. In our algorithm, the matching pattern between tasks and computing resources
with minimal completion time or optimal load balancing is encoded into the ground-state of the
Hamiltonian, and then solved by the optical coherent Ising machine, a practical quantum computing
device with at least 100 qubits. The experimental results show that the proposed quantum scheme
can achieve significant acceleration and save 97% solving time on average compared with classical
algorithms, which prove the computational advantages of optical quantum devices in solving com-
binatorial optimization problems. Our algorithmic and experimental work advances the utilization
of quantum computers to solve specific NP problems and expands practical application scenarios.

I. INTRODUCTION

The development of quantum technology is of great
scientific significance and social value, which is expected
to have a major impact on traditional technology and
trigger technological revolution and industrial transfor-
mation [1–4]. Quantum computing, as the frontier of
quantum technology, is dedicated to using the principles
of quantum mechanics to calculate and simulate com-
plex systems [5–7]. Due to its potential advantages in
processing large amounts of data quickly and efficiently,
quantum computers are expected to play an important
role in secure encryption [8, 9], database search [10, 11],
machine learning [12, 13] and many other scenarios that
are intractable with classical computers [14–20].

By harnessing the power of quantum computers, peo-
ple can also quickly optimize the scheduling processes
of personnel and equipment in order to maximize effi-
ciency and minimize costs, in scenarios such as commu-
nication networks [21, 22], healthcare [23], transportation
[24–26], and complex supply chain management [27–32].
In addition, quantum computing has the potential to
revolutionize the field of computing-power scheduling in
cloud computing [33–35], which needs to search the large
solution-space for the optimal configurations for allocat-
ing computing resources to different tasks with improved
performance and efficiency.

In this work, focusing on a specific application scenario
about computing-power scheduling problem in cloud-
rendering domain, which can mathematically modeled
as a generalized form of the multi-way number partition-

∗Electronic address: wjw17@tsinghua.org.cn
†Electronic address: wenk@boseq.com
‡Electronic address: qianling@cmss.chinamobile.com

ing problem, an important NP-complete problem [36–44],
we propose two quantum algorithms from different opti-
mization perspectives and present an experimental solu-
tion demonstration on the optical coherent Ising machine
(CIM) [45–53], an over 100-qubit quantum computing
device. The experimental results show that our quan-
tum scheme can realize a significant quantum accelera-
tion, saving 97% solving time on average compared with
classical simulated annealing (SA) and tabu search algo-
rithms [54]. As the first experimental demonstration of
quantum algorithm for the generalized multi-way num-
ber partitioning problem in optical systems, our work
shows the acceleration of quantum computers relative to
classical techniques for a specific NP-complete problem,
and also explores a new application scenario for quantum
computing.

This paper is organized as follows: we first introduce
some preliminaries in the Sec II, followed by a description
to the proposed quantum algorithms in Sec III, which
transform the scheduling of computing-power resources
into an optimization problem. In Sec IV, an experimental
demonstration of the quantum algorithm is carried out on
a practical optical quantum computer and comparisons
with classical algorithms are offered. Finally, we give a
conclusion in sec V.

II. PRELIMINARIES

A. Background and Mathematical Reduction

Image rendering in the field of film and television is
an important application scene of cloud computing [55],
as shown in figure 1. In general, such a scenario can be
expressed as: the client submits a rendering task with cer-
tain requirements and the service providers need to find
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FIG. 1: A schematic of the computing-power scheduling pro-
cess in cloud-rendering. There are N tasks in the waiting list
to be allocated to M machines. The expected duration of
task i ∈ {1, 2, · · · , N} is wi and the start of available time
for machine j ∈ {1, 2, · · · ,M} is sj . By minimizing the pro-
posed optimization functions f1(xij) or f2(xij), the objective
schemes (xij) with minimal completion time or optimal load
balancing can be found.

the optimal schemes to invoke computing resources. The
basic idea is searching the minimum number of servers
under constraints, which is realized by presetting a ma-
chine number first, and then apply various heuristic algo-
rithms to determine the current state (completion time,
load balancing, and so on) for satisfiability comparison.
However, due to the increasing amount of data, the opti-
mal task-server scheduling scheme cannot be effectively
obtained in the large-scale dynamic cloud-rendering and
redundant rendering is a common phenomenon. This
would lead to the mismatch between server and render-
ing tasks, causing computing resource waste and render-
ing efficiency reduction.

Mathematically, this process can be modeled as a gen-
eralized multi-way number partitioning problem [42–44] ,
which is a typical NP-complete problem [37]. The multi-
way number partitioning problem is defined as dividing/-
partitioning a given set S = {· · · , ai, · · · } of positive in-
teger into k subsets to make the subset-sum as nearly
equal as possible. For the widely studied k = 2 case,
number partitioning problem (NPP) can be formulated
as an optimization problem to minimize the difference

D(A) =
∣∣ ∑
ai∈A

ai −
∑

ai∈S\A

ai
∣∣ (1)

between subset A and complementary set S\A [40, 41].
Here we extend the balanced bipartition (k = 2) to multi-
partitioned cases (k ≥ 2) without constraining the ele-
ments to be integers. In addition, the target sum of each
subset can be set differently, which means that the set
S is partitioned into several subsets with unequal sums.
Through these extensions, we can establish a correspon-
dence between such a generalized multi-way number par-
titioning problem and computing-power scheduling prob-
lem in cloud-rendering domain, which is detailed in Sec-
tion III.

B. QUBO and Ising Model

Here we briefly introduce the quadratic unbounded
binary optimization (QUBO) problem and its relation-
ship with Ising model. It is well-established that many
canonical NP-hard and NP-complete problems can be
transformed into combinatorial optimization form [56].
A large class of these optimization problems can be ex-
pressed either in QUBO form with binary variables of
{0, 1} basis, or in {−1, 1} basis with spin variables of
Ising model. These two forms are equivalent and can be
easily converted [57]. To be specific, the mathematical
form of QUBO problem is expressed as follows

fQUBO(x) =
∑
i≤j

qijxixj = xTQx (2)

where x = {xi} is the binary variable vector to be solved,
and QUBO matrix Q = {qij} represents the quadratic
coefficients. The objective solution is

x∗ = argmin
x

fQUBO(x) (3)

By transforming variables as xi → (I + σi)/2 where
the σi is spin variable, the optimization functions can be
presented with an Ising model. Then the target solution
is encoded in the ground-states of the Hamiltonian

HIsing(σ) = −
∑
i,j

Jijσiσj −
∑
i

hiσi (4)

where Jij and hi are the quadratic and linear coeffi-
cients, respectively. In our experimental system, the op-
tical CIM platform can map the target QUBO problem
to an all-to-all connectivity Ising Hamiltonian with pro-
grammable parameters, and the optimal solution can be
obtained by controllable quantum phase transition pro-
cesses.

Below, we introduce two quantum optimization algo-
rithms that model the computing-power scheduling (gen-
eralized multi-way number partitioning) problem as a
QUBO problem, and provide an optical experimental
demonstration of the algorithm, together with compar-
isons to classical algorithms.

III. ALGORITHMS

In this part, we propose two quantum algorithms that
formulate the generalized multi-way number partitioning
problem as a QUBO problem from different optimization
perspectives, and take the scheduling processes in cloud-
rendering domain as a specific application scenario to
illustrate.

We first introduce a series of binary variables xij

to represent the state of matching between N tasks
and M machines. Specifically, we set xij = 1 if task
i ∈ {1, 2, · · · , N} is performed/started on machine j ∈
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{1, 2, · · · ,M}, and xij = 0 otherwise. The expected du-
ration of task i serves as a weight number wi and the total
time of tasks is W =

∑N
i=1 wi. The completion time for

performing tasks on machine j is cj =
∑N

i=1 wixij + sj ,
where sj is the idle start time for machine j, satisfying∑M

j=1 sj = S. To ensure task i is only assigned to one
machine, we can introduce constraint

M∑
j=1

xij = 1 (5)

Then we have
∑M

j=1 cj = W + S. First, we propose an
optimization function for minimizing the completion time
of the whole task, which is equivalent to determine the
minimum of the maximum values of cj

min
xij

max
j

{c1, c2, · · · , cj , · · · , cM} (6)

By introducing variable u with u ≥ cj ∀j, the original
problem can be changed to finding the minimum values
of an optimization function min f1(xij) = minu. Then
the inequality can be transformed into equality by slack-
variables v(s)j = u−cj ∀j, and they can be expressed with
binary expansion as

u =

L−1∑
l=0

2lu
(s)
l ≥ 0, v

(s)
j =

L−1∑
l=0

2lv
(s)
jl ≥ 0 (7)

where parameter L is related to precision, while u
(s)
l and

v
(s)
jl take values of zero or one. Inserting all the con-

straints into the objective function, we can get the opti-
mization function for the min-max problem

f1(xij) =

L−1∑
l=0

2lu
(s)
l + β1

N∑
i=1

(

M∑
j=1

xij − 1)2

+β2

M∑
j=1

(

L−1∑
l=0

2l(u
(s)
l − v

(s)
jl )−

N∑
i=1

wixij − sj)
2

(8)

where β1 and β2 are penalty coefficients. The number
of variables used here is (NM + L + ML). Due to the
introduction of slack-variables, improvement of accuracy
depends on the increase of encoding bits, which is not
conducive to the application of algorithm on the noisy
intermediate-scale quantum (NISQ) devices.

Alternatively, we can turn to find the optimal scheme
with a balanced load for each machine, which can be ob-
tained by searching a relatively balanced distribution of
completion time [58], and it can be transformed into find-
ing the minimum values of a variance-like optimization
function

f2(xij) =
1

M

M∑
j=1

(cj −
W + S
M

)2 (9)
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FIG. 2: A schematic diagram of the measurement feedback
CIM. EDFA is the erbium-doped fiber amplifier, SHG is the
second harmonic generation, BHD is the balanced homodyne
detection, IM/PM is the intensity/phase modulator. The
pulses of local oscillator (LO) are directly obtained from the
master laser.

Combined with the constraint in equation (5), the loss
function to be minimized is

f2(xij) =
1

M

M∑
j=1

(

N∑
i=1

wixij+sj− c̄)2+β

N∑
i=1

(

M∑
j=1

xij−1)2

(10)
where penalty coefficient is β and expected mean value is
c̄ = (W + S)/M . Compared with optimization function
f1(xij), this variance-like optimization function f2(xij)
only needs MN variables, a big reduction in bits/qubits
[59], and it is more consistent with the definition of multi-
way number partitioning problem. So we use the latter
objective function for experimental demonstration and
discussion below. Once we find the optimal {0, 1} series
for xij , we can determine what tasks are performed in
each machine. Both objective functions constructed here
have the QUBO form, and the target solution encoded
in the ground-states can be obtained via quantum algo-
rithms like quantum annealing [60, 61] and quantum ap-
proximate optimization algorithm [62] on quantum com-
puters. Alternatively, we present the optical experimen-
tal solution based on CIM, which can serve as a good
physical platform for QUBO problem.

IV. EXPERIMENT

In this part, we present an optical realization and so-
lution of above algorithm based on the CIM. Unlike clas-
sical computers that run on semiconductor integrated
chips, the CIM system is a hybrid quantum computing
platform, using laser pulses in optical fibers as qubits for
computation, as shown in figure 2. The optical quantum
computer used here is the measurement feedback CIM
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FIG. 3: Cut values with the running time (in millisecond).
The panels in the left column (a-c) fix the number of machines
as M = 4, while panels in the right column (d-f) fix the
number of tasks as N = 20.

[45] including optical and electrical parts, which is devel-
oped by Beijing QBoson Quantum Technology Co., Ltd.
[63].

The optical part consists of lasers, amplifiers, PPLN
crystals, and fiber ring. The laser is a femtosecond pulsed
fiber laser with a locked repetition frequency at 100 MHz.
Because the output power (100 mW) of laser is relatively
low, an amplification is realized by erbium-doped fiber
amplifier (EDFA). The frequency of amplified laser is
doubled using PPLN crystal to produce a 780 nm laser,
which is used as the pump source to synchronously pump
the phase sensitive amplifier (PSA) to form degenerate
optical parametric oscillation (DOPO) [64, 65]. There
are 211 oscillating pulses in the fiber loop during the
calculation, and the time interval of each two pulses is
∆t = 10 ns. Therefore, the transmission time of optical
pulses in the loop is Tc = 2.11 µs. In addition to the opti-
cal part, the electrical part contains field-programmable
gate array (FPGA), AD/DA converter, and phase detec-
tor. FPGA and high-speed AD/DA are used to measure
and control optical pulses based on the interaction inten-
sity, which can realize the interaction between qubits in
the Ising model. FPGA by Xilinx used here can support
DSP multipliers and on-chip resource storage. The laser
output in the fiber ring and the laser of fundamental
frequency (1560 nm) are measured by optical balanced
homodyne detectors (BHD), which can read out the in-
phase amplitude of output pulse.

To test the hardware capability, we run the experi-
ments with cases up to one hundred qubits, and design
two groups of experimental schemes, which fixes the ma-
chine (or task) number and varies the other parameter.
The CIM used for the experiments has a fixed number
of simultaneous oscillating pulses in fiber ring for qubits.
If the problem scale of the model is below the available
qubits, the non-computing qubits will be used to stabi-
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FIG. 4: The graphs and results for experimental demonstra-
tion cases with minimum- and maximum-scale. (a) [N,M ] =
[10, 4] and (b) [N,M ] = [20, 5]. Notations x[i][j] = xij here.
The node colors indicate different spin results, where red rep-
resent +1 and blue is −1. The maximum cut value is also
marked.

lize the system. We assume that the time required for
each task and idle time for each machine are both pos-
itive integers taken from set N+. For comparison, we
also adopt classical algorithms including SA and tabu
search to solve the experimental models, which are run
100 times on a CPU (Intel Core i7-10750H, 2.60 GHz
with 16-gigabyte random-access memory) in each prob-
lem setup for obtaining the mean values and standard
deviations.

As shown in the figure 3, when the power of pump
light is gradually increased to the oscillation threshold,
phase transition happens and the values of cut increase
with running time. The cut value adopted here is the
score of the maximum cut problem transformed from the
original optimization problem [50], and it is a measure
that is anti-linear to the objective function value, that
is, the maximization of cut corresponds to the minimiza-
tion of the objective function. Then the light will trans-
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FIG. 5: Scheduling schemes determined by the quantum
(CIM) and classical (SA and TABU) algorithms with differ-
ent problem scales in experiment. (a) [N,M ] = [10, 4] and
(b) [N,M ] = [20, 5]. The x-coordinate refers to different ma-
chines, while the lengths of red and blue parts indicate the
tasks assigned to each machine with corresponding durations,
and the gray parts indicate the idle start time for each ma-
chine. The makespans (T end

cim , T end
sa and T end

tabu) of the whole
task for different solutions are labeled by dotted lines.

form from squeezed vacuum states into coherent states
with phase 0 and π respectively, which correspond to
the spin states. The loss of such a specific single-mode
oscillation is minimal and it corresponds to the ground-
state of the Ising Hamiltonian. The figure 4 shows the
experimental spin/binary variables results with problem
scale [N,M ] = [10, 4] and [20, 5], respectively. The red
nodes indicate +1 (xij = 1) and blue nodes represent −1
(xij = 0) for spins. We can conclude that the nearly all-
connected graphs are complicated with high optimization
complexity, and experimental output results satisfy the
constraints.

We can directly obtain the optimal scheduling method
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FIG. 6: Running time (in millisecond) of quantum algo-
rithm based on CIM and two classical algorithms (a,b), and
the time-saving ratio R(sa/tabu, cim) with problem scale (c).
The error bars of classical algorithms are derived from the
standard deviations of 100 repetitions. Machine number
M = 4 is fixed in (a), while in (b) task number is N = 20.

between computing-power resources and rendering tasks
based on the experimental spin states, as shown in figure
5. The makespans of the optimal allocation scheme are 17
and 45 corresponding to the minimum- and maximum-
scale in experimental setup, which can be obtained by
quantum and tabu search algorithms. It indicates the
feasibility and correctness of quantum algorithm in solv-
ing the computing-power scheduling problem. Note that
the optimal scheme is not unique due to the parameter
setting, namely the ground-state of Ising Hamiltonian is
degenerate.

In addition, the running time of the different algo-
rithms is shown in figure 6. Using notations tsa/tabu/cim
to represent the running time, we can define a ratio be-
tween them as

R(sa/tabu, cim) =
tsa/tabu − tcim

tsa/tabu
(11)

to measure the time-saving (or acceleration) capabil-
ity of quantum algorithm. Given that CIM solution is
faster, a larger ratio of R(sa/tabu, cim) ∈ (0, 1) repre-
sents a greater quantum acceleration effect. It can be
concluded that the CIM solver is faster than classical al-
gorithms, realizing an average R(sa, cim) = 96.7% and
R(tabu, cim) = 98.5% time-saving to SA and tabu search
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algorithms, respectively. On the scale of 100 qubits,
quantum solutions can achieve tens of times of accelera-
tion to classical solutions. Furthermore, we can see that
while the time of classical SA algorithm does not increase
significantly with the scale of problem, it does so at the
cost of accuracy, whereas the opposite is true for tabu
search algorithm. However, the quantum algorithm can
not only guarantee the correctness, but also has a stable
running time, which is 2.37 ms on average. The solution
time does not improve significantly for CIM with the in-
crease of qubits, so greater advantages can be expected
in the larger problem scale.

V. CONCLUSION

Although quantum computers have been proved to be
able to surpass classical computers in solving specific
problems, developing quantum algorithms for important
mathematical problems and actual production scenes is
still a field of interest. In this work, we propose two quan-
tum algorithms from different optimization perspectives
for solving the computing-power scheduling problems in
cloud-rendering domain, which can mathematically be

modeled as the generalized multi-way number partition-
ing (k ≥ 2) problem, a typical NP-complete problem.
Utilizing a 100-qubit optical quantum computing system,
we experimentally demonstrate the feasibility and advan-
tage of quantum algorithm, realizing an average 96.7%
and 98.5% time-saving to classical SA and tabu search
algorithms. The CIM-based quantum computing scheme
has a good performance in accuracy and speed, and the
running time remains relatively stable with the increase
of problem scale, which is expected to gain greater ad-
vantages in large-scale problems. It is worth emphasizing
that multi-way number partitioning is an important and
basic problem, and many other problems like cryptogra-
phy [40] can also mathematically be reduced to it. There-
fore, our work greatly expands the practical application
scenarios of quantum computers based on the hardware
with tens of thousands of qubits [50] that is available
nowadays.
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